A high performance parallelization scheme for the Hessenberg double shift QR algorithm

نویسندگان

  • Reiji Suda
  • Akira Nishida
  • Yoshio Oyanagi
چکیده

We propose a new parallelization scheme for the Hessenberg double shift QR algorithm. Our scheme allows software pipelining and communication latency hiding, and gives almost perfect load balance. An asymptotic parallelizing overhead analysis shows that our scheme attains the best possible scalability of the double shift QR algorithm, and that the overheads are less than the multishift algorithm when n = !(p 2 ), where n is the matrix size and p is the number of processors. Its high exploitation of the parallelism of the double shift QR algorithm is demonstrated by an implementation on Fujitsu AP1000+ multicomputer system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit double shift QR-algorithm for companion matrices

In this paper an implicit (double) shifted QR-method for computing the eigenvalues of companion and fellow matrices will be presented. Companion and fellow matrices are Hessenberg matrices, that can be decomposed into the sum of a unitary and a rank 1 matrix. The Hessenberg, the unitary as well as the rank 1 structures are preserved under a step of the QR-method. This makes these matrices suita...

متن کامل

Linear Convergence in the Shifted Qr Algorithm

Global and asymptotic convergence properties for the QR algorithm with Francis double shift are established for certain orthogonal similarity classes of 4 x 4 real matrices. It is shown that in each of the classes every unreduced Hessenberg matrix will decouple and that the rate of decoupling is almost always linear. The effect of the EISPACK exceptional shift strategy is shown to be negligible.

متن کامل

A Fast QR Algorithm for Companion Matrices

It has been shown in [4, 5, 6, 31] that the Hessenberg iterates of a companion matrix under the QR iterations have low off-diagonal rank structures. Such invariant rank structures were exploited therein to design fast QR iteration algorithms for finding eigenvalues of companion matrices. These algorithms require only O(n) storage and run in O(n) time where n is the dimension of the matrix. In t...

متن کامل

Fine-grained bulge-chasing kernels for strongly scalable parallel QR algorithms

The bulge-chasing kernel in the small-bulge multi-shift QR algorithm for the non-symmetric dense eigenvalue problem becomes a sequential bottleneck when the QR algorithm is run in parallel on a multicore platform with shared memory. The duration of each kernel invocation is short, but the critical path of the QR algorithm contains a long sequence of calls to the bulge-chasing kernel. We study t...

متن کامل

Convergence of the unitary QR algorithm with a unimodular Wilkinson shift

In applying the QR algorithm to compute the eigenvalues of a unitary Hessenberg matrix, a projected Wilkinson shift of unit modulus is proposed and proved to give global convergence with (at least) a quadratic asymptotic rate for the QR iteration. Experimental testing demonstrates that the unimodular shift produces more efficient numerical convergence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Parallel Computing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 1999